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THERMAL AND CREEP EFFECTS IN WORK-HARDENING ELASTIC-PLASTIC
1
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By Alexander J. Wang and William Prager (Brown University)

Extremum principles governing the isothermal deforma-
tion of s work-hardening elastic-plastic solid have been given
by Hodge and Prager2 and H1113. In the present note it 1s shown
how these principles can be extended tc include thermal and creep
effects,

Using rectangular Cartesian coordinates x3 (i = 1,2,3),
denote the infinitesimal displacement from the standard state by
uy; the infinitesimal strain by eij’ thic stress by dij’ the mean
normal stress by o, and the stress deviation by sjj. The mean

normal stress 1s defined as

O:%dii, (1)

where the usual summation convention regarding repeated subscripts

1s used; the stress deviation is defined as

~
ro
Ner

Sij = dij - g bij ’

1The results presented in thils paper were obtained in the course
of rasearch conducted under Contract N7onr-35801 between the
Office of Naval Research and Brown University.

2p, Hodge and W, Prager, A Variationsl Principle for Plastic

Materials with Strain Hardening, J. Math.Phys. 27, 1-10(1948).

3, Hill, The Mathematical Theory of Plasticity, Clarendon Press,
Oxford, 1950, pp.b63~66.



Al11-102 2

bij being the Kronecker delta. The mean normal stress 1s an
invariant cf the stress tensor, Further invariants useful ir

the theory of isotropic plastic solids are
= 1 - 1 Y

To specify the mechanical behavior of the isoiropic
solid, consider an element that, at the generic instant %, has
the temperature © and the strain €4y and is under the stress cij’
In the interval between the instants t and t + dt, let the
temperature be changed by 46 and the stress by doij = dsij
+ dobij.

The corresnonding change of strain, deij’ will then be

assumed to consist of the following components:

1) the elastlic component

deS . = a(0)ds, (4)

13 + B(9)docd

J -

where a(®) is one half of the reciprocal of the terperature-
dependent shear modulus, and B(@) is one third of the recip-
rocal of the tempcrature-dependent bulk modulus;

2) the thermal component

o _ ] ] v
degy = [at(0) syy + B'{G)ob 146 + v(6)byy d6 (5)

where (he prime denotes differentiation with respect to the
temperature and v(©) 1is the coefficient of linear thermal ex-
pansion at zero stress;

3) the creep component
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dsij - @(O,JQ,JBJBOL;; it, (6)

where ¢ = @(G,JQ,J3); and

4) the plastic component

0 1f ¥(6,75,75) <k,

de® = (7)
1} ¢(9,J2,J3)%6L (ah + [dyl) 1f $(6,J5,73) = h,

13
where the scalar h describes the state of hardening of the
considered element at the time t,.
Fquations (4) and (5) result from a generalized form of
Hooke's law in which the elas.ic constants arc functions oi the
temperature,
In Eq.(6) the derivative a¢/adij must be cvaluated for

the state of stress existing at the time t. The expression

® 99/ 00 then represcnts the rate of secondary crcep correspond-

ing to tiis state of stress. This expression is sufficiently
. general to comprise all isotropic laws of secondary creep that
have so far been proposed in the literature on creep.

In (7), the equation w(O,Jg,J3) = h represents the
temperature-dependent yleld limit for the statc of hardening
achieved at the instant t. The first linec of (7) thercfore states
that there will be no changc in plastic strain where the state of
stress is below the yield 1limit, The differential dy in the

second linc of (7) must be evaluated from the given temperature

and stress at the instant t and the changes in temperature and



A11-102 | l

stress during the considered time interval. On acccunt of the
absolute value in the second line of (7), there will be no change
in plastic strain cven if the state of stress is at the yield
1imit provided that 4d¥ < O,

The extremum principles that are te be established
concern the follow' ng boundary value problem. Consider a mass
of work-hardening plastic material that has becn deformed and,
at the time t, occupies a region V bounded by the surface S.
Suppose that the temperaturc 6, the stress oij , and the state
of hardening h arc known throughout V., If the unit vector along
the exterior normal of S 1s denoted by ny the surface traction
in the considered statec is Ty = dijnj' Prescribe now infinites-
imgl changes d® of the temperature throughout V, infinitesimal
changes dTi of the surface traction on the portion ST of the
surface and infinitesimal displacements dUjy on the remainder
Sy of the surface. What are the corresponding changes of stress
dci.1 and the corresponding displacement dui throughout V?

The infinitesimal displacement dui caus2s the strain to

change by
degy = § [gp-(any) + 3‘5%“1“1” : (8)

The change of strecss must satisfy the equatiorn of equilibrium

which, to within higher order terms, can bc written as

‘Eg—i(ddid) = 00 (9)
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Finally, the followinz boundary conditions must be satisfied

doij ny = dT4 on S (10)

T b

duy = dU; on Sy (11)

The problem thus consists in determining the change of stress

doij and the displaccecment duy in such a manner that the boundary
conditions (10) and (11) and the equation of cquilibrium(9) are
satisiied, and that the strain change computed from (8) is related
to the given values of 6, 46, °ij and h and to thc sought stress
chanse ddij by means of Bgs.(4) through (7).

The first extremum princivle compares the actual changes
of stress and strain, d°1j and deij s to a fictitious change of
stress ddIJ and the corresponding change of strain de;j. The
stress change ddzj is supposed to satisfy the cquetion of equiiib-
Tium and the boundary condition on ST sy and the strain changec
de;j
Egs.(4) through (7), but need not be derivable from a displacc-

1s associated wlth o, de, S14s h, and dd;j by mecans of

ment field., The principle of virtual work then furnishes the

equation
N * - n *®

where T} = 4oy ny.
The integrand of the left-hand side of (12) can be

transformed as follows:
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* * *
* * *
- [doij(deij - deij) + deij(ddij - ddij) ]. (13)

On the righc-hand side of this equation, introduce the com=-

ponents (#) through (7) of the change of strain, Since
*Q - e } *xc _ c
deij = deij and dsij = deij,

* sk * xQ *C
2(d°ij - ddij) deij = doij(deij + deij + deij)

N

B e * *e *D .. € p
- ddi.}(dﬁl:} 4+ de + d&iij) - [doij(deij +d€ij - cij - deij)

34
<~

+ (ds‘i’j + de;‘l’:,)(doij - du’IJ)] . (14)

The bracket in (14) involves only clastic and plastic changes

of strain. When the case do;J = dd;5 1s excluded, it can be

shown that this bracket is positive. This is donc in exactly

the same manner as in the proof of the extremum princple for
isothermal deformation of a work-hardening plastic material

(sce Hi113, pp.63-64), Thus, the left-hand side of (14) is
smaller than the first two tcrms on the right-hand sldc unless do;J
= doij' When this result is introduced into (12), the foliowing

rclation is obtaineds

A n

£ J‘[dd;ij(de;d +actd +aei$) 1 av - | (ary aupasy

e
> %|y[d°ij(d°ij + degy + degj)] av - .F(dTi duy)dsy , (15)

where the equality sign holds only 1if ddIJ = ddij. The relation
(14) cstablishes a minimum property of the actual change of state.
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¢ the second extremum prineciple can bc discussed,
it must bc shown that Eqs.(4) through (7) can be transformed so
as to represcnt ddij as function of deij. We note first that
de?j and dsij follow immediately from the data of the considered
boundary value problem, Since these two components of the change
of strain arc %nown, giving deij is equivalent to giving deij

+ aely = aeyy - deyy - de§y . The proof that the sum dey

+ degj specifies a unique do‘iJ then proceeds exactly as in the
casc where dsij + degj vcprescents the entire change of strain
(sce Hill3, pp.68-69),

The sccond cxtremum principle compares the actual
changes of strain and stress, dsij and d°1j y, to a fictitious
change of strain de;J and thc corresponding change of stress
dd;j « The strain change de;J is supposed to be derivable from
a displacement ficld duI that satisfies the boundary conditions
on Sy

the stress change doIJ 1s associated with €, 46, ¢ h,

3 s 9
* 1

and de, by mcans of %q. (&) through (7), but necd not satisfy
J

the equzation of equilibrium or the boundary condition on ST .
The principle of virtural work then furnishecs the equation

Jrasyycaeyy - deyq)] AV = J rarycan} - aup) 1 a8, (16)

The integrend on the left-hand side of (16) equals

3

doij (dszj + dei? - dei:J - degj) (17)
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and does not involve thc thermal or crcep effcects; it can there-
fore be transformed in exactly the same menncr as in the casc
where the sum of elastic and plastic strain changes represents
the total strain change (see Hill3, pp.65-66). As a result of

of this transformation, the following reiation is obtained:

*e

f(d'ri duI)dsT ~ % J\[ddzj (deyy + de:l;) Jav

f e
< f(d'ri du, )dsy - %d[ddij(dezj + de‘i’J)] dv, (18)

where the equality sign holds only if dezj = deij' The relation

(18) estahlishes a maximum property of the actual change of state.
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